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This paper studies the problem of parameter estimation in resonant, acoustic fluid-
structure interaction problems over a wide frequency range. Problems with multiple reso-
nances are known to be subjected to local minima, which represents a major challenge in
the field of parameter identification. We propose a stepwise approach consisting in subdi-
viding the frequency spectrum such that the solution to a low-frequency subproblem
serves as the starting point for the immediately higher frequency range. In the current
work, two different inversion frameworks are used. The first approach is a gradient-
based deterministic procedure that seeks the model parameters by minimising a cost func-
tion in the least squares sense and the second approach is a Bayesian inversion framework.
The latter provides a potential way to assess the validity of the least squares estimate. In
addition, it presents several advantages by providing invaluable information on the uncer-
tainty and correlation between the estimated parameters. The methodology is illustrated
on synthetic measurements with known design variables and controlled noise levels.
The model problem is deliberately kept simple to allow for extensive numerical experi-
ments to be conducted in order to investigate the nature of the local minima in full spec-
trum analyses and to assess the potential of the proposed method to overcome these.
Numerical experiments suggest that the proposed methods may present an efficient
approach to find material parameters and their uncertainty estimates with acceptable
accuracy.
� 2019 The Authors. Published by Elsevier Ltd. This is an open access article under the CCBY

license (http://creativecommons.org/licenses/by/4.0/).
1. Introduction

The scope of the current work is to investigate challenges arising in the solution of optimisation problems associated with
the performance of coupled dynamic systems or the estimation of their model parameters. Of particular interest is the occur-
rence of local minima, often posing a major obstacle in the solution of such problems.

There exist a vast amount of works published within the fields of material parameter estimation and optimisation. A com-
prehensive review of the literature is beyond the scope of the present paper; the interested reader is referred to [1,2]. Most
works discussing performance optimisation in structural–acoustic systems either work on the eigenfrequencies or limit the
cost function to frequency bands containing a few resonances, see e.g. [3–10].

http://crossmark.crossref.org/dialog/?doi=10.1016/j.ymssp.2019.02.014&domain=pdf
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ymssp.2019.02.014
http://creativecommons.org/licenses/by/4.0/
mailto:pege@kth.se
https://doi.org/10.1016/j.ymssp.2019.02.014
http://www.sciencedirect.com/science/journal/08883270
http://www.elsevier.com/locate/ymssp


162 P. Göransson et al. /Mechanical Systems and Signal Processing 126 (2019) 161–175
However, the problem of interest here, i.e. estimation of model parameters in resonant, coupled problems over a fre-
quency range containing a number of resonances, remains open. In particular those cases where, over the range of frequen-
cies studied, there is a varying degree of interaction between the physical fields involved, are widely agreed to be subjected
to local minima.

These often render the parameter identification questionable if at all tractable, as demonstrated in previous works by the
authors and others, see e.g. [11–16]. The presence of resonances and anti-resonances in the spectrum is not the only factor
responsible for local minima. In fact, it has been observed in previous works, see for example [13,14], that a sufficient degree
of anisotropy is prone to induce such phenomena as well. The underlying cause for this is thought to be the self-similarity of
the structural response at discrete combinations of the material, geometrical and loading properties. However, in order to
distinguish between local minima related to such dynamic response phenomena, and those related to the resonant spectrum
fitting in itself, robust and efficient combinations of inversion methods are interesting to study.

The present paper addresses a method for overcoming local minima in the estimation of material properties in coupled
dynamic resonant problems over a wide frequency band. The proposed approach relies on a stepwise solution, where the
solution of each sub-problem is the starting point of the next. While a multi-step concept as such is not new, see for example
[17] where a 3-step procedure was employed to enhance convergence, [18] where different models are employed to fit sub-
sets of parameters, and [19] where seismic waves are used to estimate subsurface properties using a frequency-by-frequency
inversion approach, the proposed strategy is novel in that it specifically addresses resonant problems by employing an incre-
mental frequency domain augmentation approach as discussed in the paper.

In our work, we have chosen to combine two different estimation methods, one based on a gradient, local search
approach, [20], and one global search based on the Bayesian inversion framework, [1,21,22]. This enables us to combine
the best of two analysis frameworks, [23,15], complementing the deterministic search with additional insight into ill-
posedness, measurement, and/or model uncertainties, etc. in the inverse problem. This adds a major advantage as the prob-
ability density computed from the Bayesian solution, reveals not only the different point estimates but also tells about the
correlation between different parameters and also the credible intervals of the estimates. In addition, while the Monte Carlo
based estimate converges to the global minimum if the number of samples is not limited, the combination provides more
accurate initial conditions for the chain(s) and this holds the potential of reducing the computational time.

The proposed method is here demonstrated for a simplified one-dimensional fluid-structure problem exhibiting a com-
plex behaviour, chosen for its computational tractability as well as being inexpensive to solve. The studied problem pos-
sesses a known solution and its fluid-structure coupling effects are limited to the interface between the two media. This
provides the possibility to conduct extensive numerical experiments with controlled characteristics, such as frequency res-
olution, dissipative losses, nature of coupling, etc. The model problem chosen for the current work is selected based on the
authors’ previous experiences from estimation in resonant systems involving soft materials, and the difficulties associated
with local minima [14,24,25]. In the latter works, parameter estimation has required manual guidance to a certain extent
in order for the cost function to converge. The authors aim herein at assessing the convergence behaviour of the proposed
methodology, thus opening its applicability to more complex cases.

The paper is structured as follows. The model problem formulation is given next in Section 2. The deterministic and Baye-
sian inversion frameworks are introduced in Section 3 while Section 4 is dedicated to numerical experiments. Finally, dis-
cussion and conclusions are given in Sections 5 and 6, respectively.
2. Background and problem formulation

2.1. Model problem

Consider a freely moving one-dimensional (1D) solid body, excited at one end by a harmonic force of amplitude F, and
coupled to an air cavity which is rigidly terminated at its other end, see Fig. 1. Both domains are modelled in the form of
the 1D wave equation and have the same cross-section area A. Let p denote the acoustic pressure in the air cavity, u the linear
solid displacement, qs the solid density, and qf the fluid density. The domain lengths are set to Ls and Lf for the solid and the

fluid, respectively. The harmonic time dependence is chosen as eþjxt , where x is the angular frequency.
Fig. 1. Schematic picture of the studied problem.
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The solid and the fluid are both assumed to be damped, with loss factors gs and gf , respectively. The complex speed of
sound for the solid and the fluid may thus be written as
Table 1
Fixed p

n

hmeas
c2s ¼ ĉ2s 1þ jgsð Þ and c2f ¼ ĉ2f 1þ jgf

� �
; ð1Þ
where ĉf ;s denotes the amplitude of the speeds of sound. The complex wave numbers for the fluid and solid are then
kf ¼ x
cf

and ks ¼ x
cs
: ð2Þ
The solution to the coupled problem is straightforward and will not be detailed here. The mean sound intensity level, at
frequency x, radiated from the structure to the fluid is given by
Iðh; n;xÞ ¼ 10 log
jRe jxp0u

�
0

� �j
2Iref

� �
; ð3Þ
where Iref ¼ 10�12 W�m�2. The sound intensity level I is used in the current work as the target quantity that the model should
reproduce as a basis for the parameter estimation. In Eq. (3), the pressure and the solid displacement (at x ¼ 0) are given by
p0 ¼ p0 h; n;xð Þ ¼ F=A
cos ksLsð Þ � qscs

qf cf
tan kf Lf

� 	
sin ksLsð Þ ; ð4Þ
u0 ¼ u0 h; n;xð Þ ¼ F=A
cos ksLsð Þ � qscs

qf cf
tan kf Lf

� 	
sin ksLsð Þ

tan kf Lf
� 	

qf cfx
: ð5Þ
In Eqs. (3)–(5), n denotes the set of known parameters and h the set of unknown parameters,
n ¼ qf ;qs; Lf ; Ls;A; F
n o

; ð6Þ
h ¼ ĉf ; ĉs;gf ;gs

n o
: ð7Þ
2.2. Target properties

As stated in the introduction, the problem chosen is selected on the basis of it being simple to model and having a low
computational cost, yet complex enough to exhibit local minima, which pose a formidable challenge to most approaches for
inverse modelling. The fixed parameters for the solid have been chosen to be representative of a fairly light open-cell poly-
mer foam, with a density low enough to induce a strong coupling with the air cavity over a wide frequency range.

The parameters for the target model are shown in Table 1, where hmeas denotes the target parameters governing the mea-
sured system.

With the chosen target model parameters, the fundamental frequencies and first harmonics of the uncoupled resonances
of the fluid and the solid are shown, together with the coupled system resonances, in Table 2. Note that the fundamental

uncoupled frequencies of the two systems are well separated, f 1f and f 1s , hence implying a moderately strong interaction

between the fluid and the structure for these. Also, the fundamental resonance of the fluid cavity f 1f , is within 1 Hz from

the first harmonic of the solid, f 2s , which leads to the well-known up- and down-ward shifts in the coupled frequencies occur-

ring for every second resonance of the solid, as may be seen from Table 2 for e.g. f 3c and f 4c .
As the focus is here on the phenomena rather than computation efficiency, a frequency range of 0.5-1000 Hz is used, with

a frequency resolution of 0.0153 Hz, in the numerical experiments performed.
arameters n and target parameters hmeas for the studied problem.

Fluid Solid Global

qf ðkg=m3Þ Lf (m) qs ðkg=m3Þ Ls (m) F (N) A ðm2Þ
1.2 1 30 0.338 1 0.01

ĉf (m/s) gf ĉs (m/s) gs – –
343.5 0.0005 57.735 0.0005



Table 2
Fundamental and first harmonics: of the uncoupled resonances of the fluid
(subscript f) and the solid (subscript s), and of the coupled system resonances
(subscript c). All frequencies are in Hz.
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3. Inverse problem

3.1. Observation model

Recalling the aim of this work, together with the choice of model problem as described above, we consider also the influ-
ence of noise in the target spectrum data, from now on referred to as measurement data. This choice is partially made in
order to avoid the ‘‘inverse crime” trap discussed below, but also to render the measurement data set more realistic and
in this way obtain a preliminary assessment of the robustness of the proposed method. For the purpose of the current work,
the noise is introduced in the form of additive errors on the sound intensity. The observation model may thus be written as
Imeas h; n;xðmÞ� 	 ¼ I h; n;xðmÞ� 	þ e; ð8Þ
where xðmÞ 2 RNf�1 (Nf denotes the number of frequencies) and e models the measurement error. In this work, error e is
assumed to be Gaussian distributed with zero mean and covariance Ce ¼ r2

e I, that is e � N 0;Ceð Þ. In the covariance matrix,
re denotes the standard deviation of the noise and I is the Nf � Nf identity matrix.

As stated in the introduction, we have chosen to apply and combine two different approaches to the inverse problem, a
gradient search method and a method based on a Bayesian framework. Both of these are well-known and have been dis-
cussed in numerous papers, thus we will not go into details about either of them as the focus here is on the estimation
and the problem of local minima in resonant systems.

Each method is run several times in order to get some statistics of their respective convergences to the target model. For
each such repeated computation, the starting point is generated from a uniform distribution between the lower and the
upper bounds of each of the variables respectively.

3.2. Numerical target

In the current work, purely simulation-based measurement data are used in the inverse computations. In such studies, it
is of great importance to avoid committing an ‘‘inverse crime” [21], i.e. to avoid that the numerically-based measurement
data is produced by the same model that is used to estimate the model parameters, and to avoid that the discretization
in the measurement data simulation is the same as the one used in the inversion. Our choice for avoiding this is to use a
discretized solution, leading to a different numerical accuracy for generating simulated measured data and the analytical
model used in the inversion, as verified by Fig. 2. In this paper, we thus generate the measured data set using the Comsol
Multiphysics software version 5.3a while in the inversion we use the analytic solution of the problem.

For the Comsol model, which consists of an axi-symmetric model, the element size is Ler ¼ Lex ¼ 0:0058 m for the solid ele-
ments in a mapped quadrilateral mesh with second order shape functions, while for the fluid we choose elements with
Fig. 2. Relative quadratic error for the coupled Comsol and analytical solutions, pressure in fluid domain and displacement in solid.
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Lex ¼ 0:0344 m and Ler ¼ 0:0058 m. Thus the mesh is compatible along the interface between the fluid and the solid. For both
media these element lengths observe Lex;r / kmin=10 for kmin ¼ ĉs;f =fmax.

With increasing frequency, the relative quadratic error between the discretized Comsol and the analytical solutions grows
to around 7%, as shown in Fig. 2.
3.3. Deterministic framework

For the gradient search, the Globally Convergent Method of Moving Asymptotes (GCMMA) is used in the current work
[20]. The cost function to be minimised is defined as
KðhÞ ¼
XNf

‘¼1

Imeas hmeas; n;xðmÞ
‘

� �
� I h; n;xðmÞ

‘

� �


 


2

Imeas hmeas; n;xðmÞ
‘

� �


 


2
; ð9Þ
where h 2 A, with A ¼ hmin; hmax½ �. The parameters h are not subjected to any additional constraints. We employ a re-scaling
of all design variables such that they are mapped to the dimensionless domain h 2 ½1;2�, see [12] for more details. The gra-
dients required for the cost function are computed using finite differencing, with a step of dh ¼ 10�12.

In the analysis, a termination criterion of the GCMMA iterations is set to 10�8 for the variation of the cost function and
10�6 for the change in the design variables, as monitored over 5 subsequent iterations. As the focus is on the problem of local
minima, and not on computational efficiency, the number of iterations for each gradient solution is allowed to reach 600 in
order to ensure that the iterations are terminated based on convergence, to facilitate the evaluations described below.

In the following, the solutions obtained from the gradient search method will be referred to as GCMMA.
3.4. Bayesian framework

In the Bayesian framework [1,21,22], estimated variables h are modelled as random variables. In this inference, the main
tasks are to construct the likelihood and prior models pðImeasjhÞ and pðhÞ, respectively. The likelihood model gives the relative
probabilities that the model generates the observations Imeas over all choices of parameters, while the prior model sets con-
straints on the model parameters. The solution to the inverse problem in the Bayesian framework is coded in the posterior
distribution pðhjImeasÞ, which gives the relative probability of the unknowns h given the observations Imeas. The posterior dis-
tribution is obtained by Bayes’ formula
p hjImeas� 	 / p Imeasjh� 	
pðhÞ: ð10Þ
The additive observation model (8) allows us to write the likelihood model as follows
pðImeasjhÞ ¼ pe Imeas � I h; n;xðmÞ� 	� 	
; ð11Þ
where pe is the probability density of the error e. Since the error e is assumed to be Gaussian, the likelihood density can be
written as
pðImeasjhÞ / exp �1
2

Imeas � I h; n;xðmÞ� 	� 	>
C�1

e Imeas � I h; n;xðmÞ� 	� 	� �
: ð12Þ
Furthermore, we use uniform prior of the form:
pðhÞ / 1 if h 2 A

0 otherwise:

�
ð13Þ
For the sampling of the posterior densities, we use the Metropolis-Hastings algorithm [26–28] with an adaptive proposal
distribution scheme [29,30]. The adaptive algorithm automatically adjusts the spatial orientation and size of the proposal
density considering all of the target distribution points accumulated so far, leading to a faster convergence.

As an initial condition for the Markov chain, we use either the GCMMA solution or random starting point and run it for
1,030,000 iterations including a burn-in of 30,000 (unless stated otherwise in the text). From the burn-in, the last 20,000
samples are used to provide an initial estimate of the covariance matrix for the adaptive proposal distribution scheme. As
the proposal density, in the first 30,000 samples, we use a zero mean Gaussian distribution, in which parameters are
assumed to be uncorrelated.

The point estimate for the parameters we use in this work is the maximum a posteriori (MAP) which corresponds to the
point in the posterior density that has the highest probability. As an indication of the uncertainty in the point estimates we
use the (narrowest) 95% credible interval, which represents the spread of the posterior density. In the following, the solu-
tions obtained from the Bayesian inversion will be referred to as MCMC (Markov chain Monte Carlo).
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4. Numerical experiments

This section presents the results obtained for the local minima problems in focus here. First the inverse problem for the
whole frequency range is solved, this will be referred to as the full spectrum estimation, including an analysis of the char-
acter of the local minima as such. The proposed stepwise method is then introduced as a means to overcome these problems.

In the following examples, estimated parameters are restricted to the interval, gs 2�0; 1�;gf 2�0; 1�; ĉf 2 ½10; 700� m=s,
and ĉs 2 ½10; 700� m=s which is referred to as the prior model in the Bayesian framework. This choice is made in order to
avoid adding a priori knowledge with respect to each of the coupled sub-systems while still keeping a reasonable range of
possible parameter values.

4.1. Full spectrum estimations

In order to explore the nature of possible local minima resulting from GCMMA, we attempted an estimation of the param-
eters given in Table 1, for a noise-free target spectrum generated through a Comsol simulation as described above.

Fig. 3 shows the initial and final parameter values for 392 different full spectrum estimations using random starting
points, none of which converged to the global minimum. The speed of sound for the fluid tends to be close to the target value
for most of the solutions, while the speed of sound for the solid seems to converge towards values that are considerably
higher than the target value. This is in contrast to the loss factors, which for both systems are too high in the full spectrum
estimations. As a matter of fact, the loss factor for the solid is often more than 2–3 orders of magnitude higher than the target
value. These results illustrate the well-known difficulties encountered when fitting a parametric model over a wide range of
frequencies, containing a large number of coupled resonances. In fact, in order to identify the parameters in Table 1 on the
full spectrum, the initial values for h must lie in the close neighbourhood of the target values.

4.2. Investigating the local minima

In this section, the focus is on two randomly chosen samples from Fig. 3, with the intention to study the results from the
full spectrum estimations in more detail. We have selected starting points that are fairly close to the target value for the fluid
speed of sound, but far away from the solid, the first having close to 10 times higher and the second nearly half the target
value. Thus, the points
Fig. 3.
for the
hinit1 ¼ ½311:7367;507:3036; 0:0001;0:3023�;
hinit2 ¼ ½324:3726;28:8632;0:5497;0:4353�;
yield the following local minima,
hfull1 ¼ ½344:9533;284:8150;0:0221; 0:2007�;
hfull2 ¼ ½342:8467;462:1551; 0:0458;0:2304�:
The results are shown in Fig. 4 in terms of sound intensity level. For both h1 and h2; ĉf is close to the value used in the
target model, while for neither of the two design points ĉs is close to the target model value. In addition, as observed in
Left: Random starting points for full spectrum solution. Right: Resulting design variables, including a close-up on the ½0; 0:01� interval of the y-axis
bottom right sub-figure. The solid parameters are denoted by ‘‘�” and the fluid by ‘‘�”.



Fig. 4. Fit of noise-free measurements. Top: The MCMC based MAP estimate after 2,000,000 samples, without use of adaptive proposal distribution scheme.
Bottom: gradient based solutions hfull1 and hfull2 (using initial points hinit1 and hinit2 ).
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the close-up y 2 ½0; 0:01� in Fig. 3, none of the estimates for the solid loss factor have converged to the target value, see
Table 1.

The solutions obtained are quite typical for the two different inversion approaches. With the restrictions set, primarily in
terms of number of iterations, GCMMA terminates at different local minima which clearly are far from the true solution,
while MCMC identifies the target model but often needs a long chain to find the global minimum. Note that in Fig. 4, the
MCMC solver does not use adaptivity. For the purpose of this investigation of the local minima, the proposal density is
assumed to be wide, allowing the chain to jump between different local minima more easily.

In order to confirm whether the obtained GCMMA solutions correspond to local minima of Eq. (9), the vicinity of hfull1 and

hfull2 is explored using MCMC. Here, the MCMC algorithm uses the adaptive proposal density after the 30,000 initial rounds
but it is assumed that the proposal density in these initial rounds is narrow in order to restrict h to the neighbourhood of
these GCMMA solutions. Figs. 5 and 6 show that both solutions obtained are indeed local minima. All four design variables
influence the cost function to the same extent and obviously there is no direction in which a gradient search can expect a
lowering of the cost function further. In addition, it can be observed from these two figures that the correlation between
the model parameters vary between almost totally uncorrelated (see e.g. in Fig. 5 ĉf and ĉs) and higher correlation (e.g. ĉf
and gf ; gf and gs). Furthermore, the 95% credible intervals reveal that the local minima are indeed narrow in all parameters.

It is worthwhile to explore the solutions obtained for the full spectrum in some more detail. In almost all cases we have
observed, the first resonance in the response spectrum (see Fig. 4) is well identified with respect to the frequency but not
particularly well in terms of amplitude. The gradient solutions appear in many cases to track the uncoupled resonances,
see for example the peak in the GCMMA solutions in Fig. 4 which occurs at around 170 Hz and at around 340 Hz, both very
close to the uncoupled fluid and solid resonance frequencies given in Table 2. In most of the solutions, this appears to be
achieved through converging towards design points where, e.g. ĉf 	 ĉtargetf =2 or ĉf 	 ĉtargetf ; and ĉs 	 2;4;5;8� ĉtargets , see
Fig. 3. An interpretation of these solutions is that they tend to combine resonances in one of the uncoupled systems with
anti-resonances in the other. Together with associated high loss factors this leads to the fitting to the anti-resonant parts
of the target spectrum that may be observed in the lower part of Fig. 4. A further observation may be made concerning
the converged solutions. In fact, the uncoupled resonances that are tracked appear to be the most affected by the coupling
effects in the combined system.

As a concluding remark of this subsection, similar findings have been observed for a case with target loss factors of 10%,
and these will not be repeated here for the sake of conciseness.

4.3. Stepwise approach

Amajor point of attractiveness of GCMMA for solving inverse problems is its low number of model evaluations [20]. How-
ever, as illustrated above, a pattern of local minima hinders the unsupervised determination of the global minimum or the



Fig. 5. Two-dimensional (2D) marginal densities for the h1. The cross denotes the maximum a posteriori estimate (MAP) and triangle is the initial condition
h1. Here the proposal density in the burn-in phase of the MCMC is assumed to be narrow in order to restrain estimated parameters to the neighbourhood of
the GCMMA-based point estimate. The dots represent a sample of the MCMC points and r is the Pearson correlation coefficient. The black curves on the
bottom and left side of each plot are the 1D marginal posterior densities. For the 1D densities, the light gray zone denotes the narrowest 95% credible
interval (bounds given in the figure).
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full spectrum problem. Observations made when studying full spectrum solutions such as those in Section 4.1 triggered the
idea for the stepwise approach presented here for solving inverse problems involving frequency-dependent experimental
data exhibiting a resonant behaviour. The method draws on the observations made related to the correlation between the
model parameters as well as the convergence of the gradient method with respect to the lowest resonances of the coupled
system. The concept is simple, yet, as detailed in what follows, remarkably powerful and robust.

The first step of the method consists in defining a number of sub-problems in which the problem is solved within a fre-
quency interval from the lowest available frequency to an incrementally higher frequency limit, i.e.
Fsub
‘ ¼ fmin; f ð‘Þmax

h i
; ‘ ¼ 1; . . . ;Nsub: ð14Þ
In the very first step, i.e. when solving for Fsub
1 ; hinit is randomised such that ĉs and ĉf are sampled with equal probability

from the interval ½10; 700� m/s and damping factors gs and gf from the interval �0; 1�, i.e. the prior model. In each of the

subsequent ‘-th steps, hinit‘ holds the parameters estimated from the solution obtained in the previous step, i.e. hinit‘ ¼ h‘�1.
That is, the point estimate obtained from the first subdivision is used as a starting point for the next frequency interval until

the entire available spectrum is covered. The last step corresponds to an estimation in the full spectrum Fsub
Nsub where the start-

ing point has been guided by the sequence of previous steps.



Fig. 6. 2D Marginal densities for the h2, otherwise same caption as in Fig. 5.
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4.4. Application to the simplified fluid-structure interaction problem

This subsection presents the application of the proposed stepwise approach to estimating the parameters of the target
model given in Table 1. The focus is on the convergence of the method and therefore the computational efficiency aspects
are not discussed at this point.

The application of the proposed approach to the dataset shown in Fig. 4 yields systematically satisfactory results, only
limited by the numerical stopping criteria set for the optimiser. As these results do not convey a significant deal of informa-
tion, the performance and robustness of the method are presented on a dataset containing additive noise. This is done in
order to demonstrate how the stepwise approach performs for a more realistic set of data, by including a standard deviation
re ¼ 2dB SIL (where SIL stands for sound intensity level) assumed for the zero mean white noise model e in Eq. (8).

In setting up the estimation problem, the frequency spectrum f 2 ½0:5; 1000� Hz is divided into Nsub ¼ 5 frequency inter-
vals, having maximum frequencies fmax ¼ f5; 25; 75; 150; 1000g Hz, see Eq. (14). This choice, which obviously is far from
unique, is based on the observations made in Section 4.2 on the lowest peak in the response occurring at circa 17.5 Hz and
the correlations between ĉf and ĉs. In particular, the first substep is aimed at capturing the low frequency asymptotic beha-
viour and the parameters governing this, in this case ĉf and gf as will be discussed later.

Using hinit ¼ hinit2 , given in Section 4.2, as a starting point, the results in Fig. 7 are obtained. The fit between the target and
the estimated model is very close, and for comparison, the less satisfactory estimation results when using the full spectrum
for the inversion are also shown.
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The convergence history for the stepwise solution is shown in Table 3, together with the full spectrum estimates and ini-
tial and target parameters. The stepwise solution and the target values are also visualized in Fig. 8. Interestingly the path to
the target solution is by first finding the loss factor for the fluid while the loss factor for the solid goes to the maximum
allowed. By the third step, all remaining parameters have been estimated. Note that this is achieved for a quite noisy target
dataset.

In analysing the convergence behaviour of the stepwise approach, it should be kept in mind that in each substep the sub-
problems solved are different from the full spectrum problem. Nevertheless, the solutions to the incremental steps provide a
path of incremental partial global minima towards the global minimum of the full spectrum problem.
Fig. 7. I as a function of frequency: model including additive noise, final step in the proposed approach, and full spectrum estimates following Table 3.

Table 3
Table lists the starting point hinit , estimates for different frequency intervals of the stepwise approach, estimate for the full spectrum, and target values.

h fmax (Hz) ĉf (m/s) ĉs (m/s) gf � 1000 gs � 1000

Starting point hinit – 324.3726 28.8632 549.6625 435.3224

Stepwise approach hstep1
5 308.9829 218.6860 0.3969 454.5294

hstep2
25 321.0744 230.1108 0.4735 450.6748

hstep3
75 343.3354 57.8623 0.4985 0.0099

hstep4
150 343.4514 57.7347 0.4956 0.4701

hstep5
1000 343.5040 57.7375 0.4997 0.4999

Full spectrum hfull 1000 342.8564 460.7882 45.7421 230.8025

Target hmeas 1000 343.5000 57.7350 0.5000 0.5000

Fig. 8. Resulting estimates after each of the incremental frequency intervals of the stepwise approach, same data as in Table 3. Horizontal black lines show
the target parameter values.
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4.5. Marginal densities for the different steps

Figs. 9–11 show the marginal densities at the end of steps f 6 5 Hz, f 6 75 Hz, and f 6 1000 Hz. The estimates found at
the end of the first step, Fig. 9, indicate that there is a strong correlation between the fluid loss factor and the fluid speed of
sound, but the remaining parameters are neither correlated to each other nor influencing the solution to the subproblem as
such.

At the 3th step, the correlation is strong between ĉs and ĉf , and it can be observed that both have indeed converged to the
target values. As the full spectrum is solved in the final step, all parameters have been estimated within 5% relative error,
with the largest deviations occurring in the loss factors, in this case related to the noise in the measured data set used for
the estimation. The figures also show how the credible interval becomes narrower when the amount of data is increased
for all parameters. The true value is found within the narrowest 95% credible intervals in all other cases, except in Fig. 11
for ĉs but also here the distance between the point estimate and the true value is acceptable, given the uncertainties in
the measurement data.

To study the robustness of the stepwise approach when applied to the model problem studied in the current work, we
performed 392 runs, using the same randomly chosen starting points as in Fig. 3. Out of these 9 did not converge to the glo-
bal minimum, see Fig. 12. In the converged solutions, the speeds of sound for both fluid and solid, as well as the loss factor for
Fig. 9. 2D Marginal densities for the substep f 6 5 Hz data. The cross denotes the maximum a posteriori estimate (MAP), the triangle is the initial condition
(based on GCMMA estimation, Fig. 7), and the circle is the true value. The dots represent a sample of the MCMC points and r is the Pearson correlation
coefficient. The black curves on the bottom and left side of each plot are the 1D marginal posterior densities. For the 1D densities, the light gray zone
denotes the narrowest 95% credible interval (bounds are given in the figure).



Fig. 10. Results for the substep f 6 75 Hz, otherwise same caption as in Fig. 9.
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the fluid are estimated within 1% relative prediction error, while in particular the loss factor for the solid is less accurately
estimated. The largest discrepancy observed for the latter is about 15%.
5. Discussion

As mentioned above, the success of the proposed stepwise approach appears to be linked to the dominant model param-
eters and the correlations between these and their variations over the different parts of the frequency spectrum studied. This
is in agreement with the findings in [17,18].

In fact the correlation between parameters observed above for the current model problem, may be illustrated further by
taking the limit for the Helmholtz numbers kf Lf ; ksLs 
 1, of Eq. (8). This may be shown to be
Iðh; n;xÞ 	 F=Að Þ2
qf ĉ

2
f

Lf

xgf

1� x2

qs ĉ2s
Ls

qsLs þ 2qf Lf
� � ; gf ;gs 
 1: ð15Þ
Accordingly, as observed above, for the first substep in the solution of the current model problem, ĉf and gf are the two
model parameters that control the behaviour of I in Eq. (3). This in itself motivates our choice of the first sub-divisions in the
previous section, and in particular the choice of the frequency range for the first substep, which in many of the converged
solutions is critical for the success. By restricting the first substep solution to essentially fitting a functional behaviour



Fig. 11. Results for the last substep f 6 1000 Hz, otherwise same caption as in Fig. 9.

Fig. 12. Left: Sample starting points that did not converge. Right: Relative prediction error for the converged samples. The solid parameters are denoted by
‘‘�” and the fluid by ‘‘�”.

P. Göransson et al. /Mechanical Systems and Signal Processing 126 (2019) 161–175 173



174 P. Göransson et al. /Mechanical Systems and Signal Processing 126 (2019) 161–175
described byEq. (15) to the target spectrum, the ratio between the fluid loss factor and the square of the fluid speed of sound,
which according to Eq. (15) is governing the intensity at low frequencies, is obtained, i.e. � 4:237610�09, already at the end of
the first step as � 4:157310�09. As a matter of fact such ratio is invariant along the path in the marginal density for ĉf vs. gf ,
Fig. 9.

A crucial aspect for the interpretation of the solution to the first step is the fact that the marginal densities related to the
solid loss factor are nearly uniform. This indicates that the cost function is not sensitive to this parameter for the first step,
which in turn suggests that the sound intensity radiated by the solid into the air cavity does not strongly depend on gs at
very low frequencies, as confirmed by Eq. (15).

In addition, Eq. (15) and Fig. 9 suggest that the low-frequency asymptotic behaviour of the system becomes increasingly
sensitive to decreasing values of the speeds of sound. This translates into the difficulty for a gradient-based optimiser to
approach the correct solution from substantially low values of the speeds of sound.

As identified in the convergence of repeated runs from random starting conditions, Fig. 12, the estimates related to the
solid loss factors are the least accurate. We relate this to the numerical model in Comsol, used as measurement data, and the
computational errors associated with it, see Fig. 2 where it is shown that the solid displacement is the dominating source of
error for most frequencies in the spectrum. Together with the added noise, this renders the convergence in the final substep
mostly to be controlled by the solid loss factor, see for example Table 3 and Fig. 11.

The choice of the lower bounds of the parameter range used, in particular for the speeds of sound, was dictated by our
observations when studying the full spectrum convergence behaviours. We found that lower speeds of sound would accord-
ingly require a lower high-frequency limit for the first step. In fact, the robustness of the approach relies on the ability of the
first step to fit the asymptotic behaviour at small Helmholtz numbers, which is seen in both the frequency response and the
marginal densities for the first step. Our choice of the first step upper frequency limit was largely dictated by this, and further

guided by the lowest coupled resonance frequency f 1c , see Table 2. Our experience from the current simple model problem, is

that f ð1Þmaxin Eq. (14) should be about f 1=3c .
Although its general applicability is still to be confirmed by exploring real parameter estimation cases, the significant

improvement in convergence experienced for the current coupled fluid-structure problem is indisputable in our opinion.
We ran almost 400 analyses with uniformly distributed random initial starting points, all but a few converged to the target
solution.

Even though the focus of the current work is not on computational efficiency, it is worth noting that as the frequency
range of the first steps is relatively narrow, it is far less expensive to compute the cost function for these as compared to
the full spectrum approach. Thus, it should be beneficial to allow for a higher number of iterations, i.e. employing more strin-
gent convergence criteria in the first increments of the stepwise estimation, in order to reduce the efforts required in the last
steps. This is obviously a trade-off that most likely is problem-dependent as well as depending on the starting point and the
path required to reach the global minimum.
6. Conclusions

Solving estimation problems over a wide frequency range with several resonances is difficult due to local minima, which
arise due to partial fits to the spectrum. Such an obstacle is particularly severe for gradient search methods. Nonetheless, also
global search approaches face difficulties, requiring a large number of iterations.

In the present paper, the proposed stepwise inversion approach is run using several hundreds of random starting points in
the parameter design space. The method is observed to converge to the target solution in the vast majority of cases. This
represents a substantial improvement of the gradient-based parameter search on its robustness to a systematic pattern of
local minima due to a resonant behaviour. In addition, although the convergence rate depends on the initial starting point
and hence the computational cost required to obtain the solution, the stepwise approach proposed in this paper provides
potentially a means to reduce the number of model evaluations required to achieve convergence, by reaching increasingly
good convergence as the evaluation frequency is increased.

Our work in the current paper used a combination of MCMC and GCMMA in order to understand the convergence beha-
viour. The settings applied for each of the two methods were partly dictated by this. Nevertheless, in the authors’ opinion,
the central findings in this paper are independent from the optimisation tool at hand. The stepwise method proposed herein
provides a means towards circumventing local minima in full spectrum inverse estimation problems involving resonant
structures by exploiting their asymptotic behaviour at low frequencies.
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